New Castle Center for Delaware Hospice, Inc

Zachary Klixbull

Penn State University – Architectural Engineering Mechanical Option Advisor: Professor Bahnfleth

Overview conditions Evaluation d Redesign cal Depth I Breadth

New Castle Center for Delaware Hospice, Inc

Advisor: Professor Bahnfleth

Zachary Klixbull
Penn State University – Architectural Engineering
Mechanical Option

Building Statistics

Building Name: DE Hospice – New Location and site: New Castle, DE Building Owner: Delaware Hospice

Occupancy type: Medical Size: 65,000 SF Number of stories: Two-story

Delivery method: GMP, CM at risk

Building Statistics

Presentation Outline

Overview conditions Evaluation d Redesign cal Depth I Breadth

on

Project Team

Owner: Delaware Hospice

Architect: Reese, Lower, Patrick &

Scoot

Construction Manager: Skanska

Structural Engineer: Macitosh Engineer
Mech./Elec./Plumbing Engineer: Reese Engineering
Food Service Consultant: JEM Associates

Interior Designer: Reese, Lower, Patrick &

Scoot

Landscape Architect: Rummler Associates
Civil Engineer: Landmark Engineering

Dates of Construction

Construction Begins: August, 2011

Start Exterior Façade: January, 2012

Construction Complete: September, 2012

Overview conditions Evaluation d Redesign cal Depth I Breadth on

Zones

Overview conditions Evaluation d Redesign cal Depth I Breadth on

Zones

Zones Some Market Mark

Overview conditions Evaluation d Redesign cal Depth I Breadth

Existing Conditions

Annual Energy Consumption				
Load	Electricity (kWh)	Natural Gas (kWh)		Percent of Total Energy (%)
Heating		21,765		1.5%
Cooling	158,997			11.2%
Supply Fans	448,844			31.7%
Pumps	257,923			18.2%
Lighting	438,502			31%
Receptacle	88,126			6.2%

Geothermal Ve	rtical Ground Loop Desig	n
	INPUT DATA	
t-circuit heat loss factor	1.02	
esign Cooling block load	1060800	BTU
	88.4	Ton
esign heating block load	-266785.3	BTU
rmal Resistance of bore	0.4672897	BTU/(F*lbm)
ed ground temperature	57.2	F
enalty for interfernce of		
adjacent bore	0.7694444	
ure at heat pump inlet (
cooling)	85	F
ure at heat pump outlet		
(cooling)	95	F
ture at heat pump inlet	54	_
(Heating)	54	F
ure at heat pump outlet (Heating)	44	F
it at design cooling load	14412.096	W
it at design heating load	-1461.0934	W
it at design neating load	-1401.0934	VV
pump correction factors		
Thermal diffusivity	1.38	FT^2/Day
Diameter of bore	0.5	ft
Time	3681	hr
G-factor	0.9	III
	20	ft
ore separation distance	20	IL

	Calculation	
required bore length for cooling	-30489.454	ft
required bores @450 ft for cooling	-67.754342	
required bore length for heating	7836.7895	ft
required bores @ 450 ft for heating	17.415088	
Fo	81276.48	_
effective thermal resistance of the ground,		
annual pulse	0.25	h*ft*F/Btu
effective thermal resistance of the ground,		
daily pulse	0.19	h*ft*F/Btu
effective thermal resistance of the ground,		
monthly pulse	0.31	h*ft*F/Btu
Part-load Factor during design month		
(cooling)	0.3207827	
Part-load Factor during design month	0.20005	
(heating)	0.20996	
Net annual average heat transfer to the	262 20682	D+/b
ground	362.30682	Btu/h
Crowned Loop Hoot Tychongon Longth	244 00222	ft/Ton
Ground Loop Heat Exchanger Length	-344.90332	ft/Ton
EER	14.07	
COP	4.07	
	•	
SEER	14.7735	

	Calculation
required bore length for cooling	9057.9775
required bores @450 ft for cooling	20.128839
required bore length for heating	7836.7895
required bores @ 450 ft for heating	17.415088
Fo	81276.48
effective thermal resistance of the ground,	
annual pulse	0.25
effective thermal resistance of the ground,	
daily pulse	0.19
effective thermal resistance of the ground,	
monthly pulse	0.31
Part-load Factor during design month	0.2207027
(cooling)	0.3207827
Part-load Factor during design month (heating)	0.20996
Net annual average heat transfer to the	0.20330
ground	362.30682
ground	302.30002
Ground Loop Heat Exchanger Length	102.46581
EER	14.07
COP	4
SEER	14.7735
	-

Overview conditions Evaluation d Redesign cal Depth I Breadth

ile Calculate Windows Help	
Heat pumps Ground heat exchanger Fluid loop Supplemental Economics De	sign
Economic parameters	
Discount rate	0.070
Tax status	Non-exemp
Down payment fraction	1.00
Rebate (fraction of investment)	0.00
Loan interest rate	0.060
Loan period	20.0
Tax rate	0.350
Inflation	0.016
Salvage fraction	0.000
Electric rates	
	0.444
Summer, peak rate Summer, off peak rate	0.114
9500 10 10 10 10 10 10 10 10 10 10 10 10 1	0.073
Winter, peak rate Winter, off peak rate	0.114
	0.073 4.220
Summer demand charge	
Winter demand charge Annual customer demand / Ratchet charge	1.000
Beginning of peak time	1050
Ending of peak time	21
Enough of peak time	21
Other energy costs	
Gas price	1.138
Water price	3.993
Propylene glycol price (per GHX length)	0.250
Fuel inflation	0.016
Annual maintenance costs	
GHX propylene glycol maintenance	50.00
Cooling tower maintenance cost multiplier	1.20
cooling tower maintenance cost manipher	1.20
First costs (installed)	
GHX costs (including headers and installation)	11.0
Closed Circuit Cooling tower first cost multiplier	2.75
Optional: Interior HVAC cost (adjustment for full LCC)	
Interior HVAC first cost	0.00
interior rivito instituti	
Interior HVAC annual cost	0.00

455.74	k\$	
455.62	k\$	
195.47	k\$	
14.5	k\$	
10.74	k\$	
0	k\$	
0	k\$	
85316.8	kWh	
16697.5	kWh	
.68619.3	kWh	
0	kWh	
0	kWh	
0	kWh	

601.4 k\$

Other Data Min. heat pump Tin 53.9 °F 81.7 °F Max. heat pump Tin 1.3 D°F Avg. annual ground temp chang 271.4 gpm GHX max. flow Temperature violations 0 hours Design Parameters 40500 ft GHX length GHX cooling setpoint (TC2) 35 °F GHX heating setpoint (TH2) 59 °F Tower setpoint N/A N/A Tower high speed N/A Cooling tower size Boiler size N/A

164.21 k\$
136.56 k\$

240.31 k\$
19.16 k\$
8.11 k\$
11.26 k\$
0 k\$

803608.5 kWh
922459.8 kWh
175677.5 kWh
180159.6 kWh
0 kWh

378.77 k\$

Other Data	
Min. heat pump Tin	50.8 °F
Max. heat pump Tin	94.8 °F
Avg. annual ground temp chang	g 1.5 D°F
GHX max. flow	279.2 gpm
Temperature violations	0 hours
Optimal Design Parameters	
GHX length	12139 ft
GHX cooling setpoint (TC2)	72.1 °F
GHX heating setpoint (TH2)	58.8 °F
Tower setpoint (DT1)	49.8 D°F
Tower high speed (TC1)	87.8 °F
Cooling tower size	40 tons
Boiler size	N/A

Overview conditions Evaluation d Redesign cal Depth I Breadth on

20-yr. Life Cycle Cost* (real \$)	353.3 k\$			
Equipment Cost (nominal \$)	59.2 k\$			
GHX cost	0 k\$			
Operating Costs, annual (nom. \$)				
Electricity - consumption	28.22 k\$			
Electricity - demand	2.28 k\$			
Maintenance cost	1.82 k\$			
Water cost	2.58 k\$			
Gas cost	1.8 k\$			
Energy Consumption				
Total	317210.1 kWh			
Heat pumps	201398.5 kWh			
Pumping	19665.2 kWh			
Cooling tower, fan	43912.6 kWh			
Cooling tower, spray pump	5812 kWh			
Boiler	46421.9 kWh			

Other Data		
Min. heat pump Tin		35.2 °F
Max. heat pump Tin		97.8 °F
Avg. annual ground temp char	ng N/A	
GHX max. flow	N/A	
Temperature violations		0 Hours
Optimal Design Parameters		
GHX length	N/A	
GHX cooling setpoint	N/A	
Boiler heating setpoint (TH1)		48.2 °F
Tower setpoint (DT1)		28.8 D°F
Tower high speed (TC1)		102.2 °F
Cooling tower size		92 tons
Boiler size		320 MBtu/hr

Overview conditions Evaluation d Redesign cal Depth I Breadth

on

Other Data	GSHP On
Number of boreholes in ground heat	
exchanger	90 @ 450
Average annual ground temp. change (F)	
Max. fluids temperature entering heat pumps	
(F)	82
Min. fluids temperature entering heat pumps	
(F)	53
GHX max. flow (gpm)	272

Overview conditions Evaluation d Redesign cal Depth I Breadth on

Electrical Breadth

Electrical

3360 sq. ft.

2175 Watts @ 1587 sq. ft.

\$191,475 investment, \$134,028 after rebat

\$4,059 annual savings

33.04 years pay back period

Conclusion

Presentation Outline

Overview conditions Evaluation d Redesign cal Depth I Breadth

In conclusion on my research of ground so heat pump or hybrid geothermal for DE Hospice, I find that hybrid geothermal is a great choice for a more green design with a lower first cost. If ground source heat pump can be afforded it would be better to choice them in the long run. With only saving \$53, a year, it would only take just over six year annual savings to make up for the \$319,18 equipment cost.

Reference

brid Ground-Source Heat Pump Installations: Experiences, d Tools." Energy Center of Wisconsin. June 30, 2011

andbook: HVAC Applications." 2007. American Society of ation, and Air-Conditioning Engineers

Simple Approaches to Energy Efficiency: Optimal Air, Geothermal" ASHRAE Journal July (2006): pp. 44-50

d Geothermal Heat Pump for Beachfront Hotel" ASHRAE 06): pp. 49-55

augh and Kevin Rafferty. "Ground-Source Heat Pumps: rmal System for Commercial and Institutional Buildings" ociety of Heating, Refrigeration, and Air-Conditioning

Appendix

$$L_{c} = \frac{q_{a} \cdot R_{ga} + [q_{lc} - 3.142 \cdot W_{c}] \cdot [R_{p} + PLF_{m} \cdot R_{gm} + R_{gd} \cdot F_{sc}]}{t_{g} - \left[\frac{t_{wi} - t_{wo}}{2}\right] - t_{p}}$$

F_{sc}= short circuit heat loss factor

L_c= required bore length for cooling, ft

q_a= net annual average heat transfer to ground, Btu/h

q_{lc}= building design cooling block load, Btu/h

R_{ga}= effective thermal resistance of ground (annual pulse), h-ft-°F/Btu

R_{gd}= effective thermal resistance of ground (daily pulse) , h-ft-°F/Btu

 R_{gm} = effective thermal resistance of ground (monthly pulse) , h-ft-°F/Btu

R_p= thermal resistance of pipe and borehole, h-ft-°F/Btu

t_g= undistributed ground temperature, °F

t_p= temperature penalty for interference of adjacent bores, °F

 $t_{\text{wi}}\text{= }\textit{liquid temperature at heat pump inlet, }\text{`F}$

t_{wo}= liquid temperature at heat pump at outlet, °F

W_c= power input at design cooling load, Btu/h

PLF_m= part load factor during design month

$$r_{of} = \frac{4 \cdot \alpha \cdot \tau_f}{d_p^2}$$

$$= \frac{4 \cdot \alpha \cdot [\tau_f - \tau_1]}{d^2} \qquad \qquad R_{gm} = \frac{G}{d^2}$$

$$F_{o2} = \frac{4 \cdot \alpha \cdot \left[\tau_f - \tau_2\right]}{d_p^2}$$

$$R_{gd} = \frac{G}{k}$$

 F_{of} = Fouriers number for τ_f

 F_{o1} = Fouriers number for τ_1

 F_{o2} = Fouriers number for τ_2

 α = Thermal diffusivity of the ground, m^2/day

d_o= Outside diameter of pipe, ft

k_g= Thermal conductivity of the ground, Btu /h-ft-°F

